Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
[26a12b][26a12b]
Schritt 1
Schritt 1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Schritt 1.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[2262a212b][2262a212b]
Schritt 1.1.2
Vereinfache R1R1.
[13a212b][13a212b]
[13a212b][13a212b]
Schritt 1.2
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
Schritt 1.2.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[13a21-12-3b-a2][13a21−12−3b−a2]
Schritt 1.2.2
Vereinfache R2R2.
[13a20-1b-a2][13a20−1b−a2]
[13a20-1b-a2][13a20−1b−a2]
Schritt 1.3
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
Schritt 1.3.1
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
[13a2-0--1-(b-a2)][13a2−0−−1−(b−a2)]
Schritt 1.3.2
Vereinfache R2.
[13a201-b+a2]
[13a201-b+a2]
Schritt 1.4
Perform the row operation R1=R1-3R2 to make the entry at 1,2 a 0.
Schritt 1.4.1
Perform the row operation R1=R1-3R2 to make the entry at 1,2 a 0.
[1-3⋅03-3⋅1a2-3(-b+a2)01-b+a2]
Schritt 1.4.2
Vereinfache R1.
[103b-a01-b+a2]
[103b-a01-b+a2]
[103b-a01-b+a2]
Schritt 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2